

24 and 40 Watt Peak Power Zener Transient Voltage Suppressors

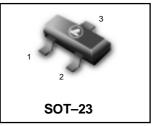
SOT–23 Dual Common Anode Zeners for ESD Protection

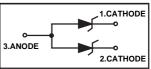
These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common anode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

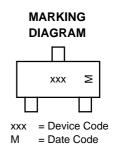
Specification Features:

- SOT–23 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range 3 V to 26 V
- Standard Zener Breakdown Voltage Range 5.6 V to 33 V
- Peak Power 24 or 40 Watts @ 1.0 ms (Unidirectional), per Figure 5. Waveform
- ESD Rating of Class N (exceeding 16 kV) per the Human Body Model
- Maximum Clamping Voltage @ Peak Pulse Current
- Low Leakage $< 5.0 \mu A$
- Flammability Rating UL 94V-O
- We declare that the material of product compliance with RoHS requirements.

Mechanical Characteristics:


CASE: Void-free, transfer-molded, thermosetting plastic case **FINISH:** Corrosion resistant finish, easily solderable


MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES: 260°C for 10 Seconds


Package designed for optimal automated board assembly Small package size for high density applications Available in 8 mm Tape and Reel

Use the Device Number to order the 7 inch/3,000 unit reel. Replace the "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel.

LMBZ6V8ALT1G Series

ORDERING INFORMATION

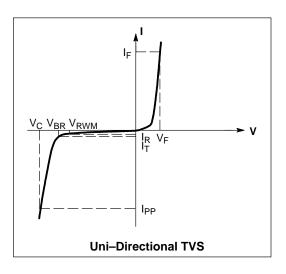
Device	Package	Shipping
LMBZ5V6ALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ6V2ALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ6V8ALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ9V1ALT1G/T3G	SOT-23	3000/10000 Tape & Reel
LMBZ10VALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ12VALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ15VALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ18VALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ20VALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ27VALT1G/T3G	SOT-23	3000/10000Tape & Reel
LMBZ33VALT1G/T3G	SOT-23	3000/10000Tape & Reel

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the table on page 3 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	ρĸ	24 40	Watts
Total Power Dissipation on FR–5 Board (Note 2.) @ T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance Junction to Ambient	$R_{ hetaJA}$	556	°C/W
Total Power Dissipation on Alumina Substrate (Note 3.) @ T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance Junction to Ambient	$R_{ hetaJA}$	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C


- 1. Non–repetitive current pulse per Figure 5. and derate above T_A = 25°C per Figure 6. 2. FR–5 = 1.0 x 0.75 x 0.62 in.
- 3. Alumina = $0.4 \times 0.3 \times 0.024$ in., 99.5% alumina

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
I _T	Test Current
ΘV _{BR}	Maximum Temperature Coefficient of V _{BR}
I _F	Forward Current
V _F	Forward Voltage @ I _F
Z _{ZT}	Maximum Zener Impedance @ I _{ZT}
I _{ZK}	Reverse Current
Z _{ZK}	Maximum Zener Impedance @ I _{ZK}

^{*}Other voltages may be available upon request

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) **UNIDIRECTIONAL** (Circuit tied to Pins 1 and 3 or Pins 2 and 3)

 $(V_F = 0.9 \text{ V Max } @ I_F = 10 \text{ mA})$

24 WATTS

			I _R @	Breakdown Voltage			Breakdown		Max Impedan	Zener ce (Note	÷ 5.)	_	l_{PP} e 6.)	
	Device	V _{RWM}	V _{RWM}	V_{BR}	(Note 4.) (V)	@ ե	Z _{ZT} @ I _{ZT}	Z _{ZK} (@ ZK	V _C	I _{PP}	ΘV_{BR}	
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	Ω	Ω	mA	V	Α	mV/°C	
LMBZ5V6ALT1G	5A6	3.0	5.0	5.32	5.6	5.88	20	11	1600	0.25	8.0	3.0	1.26	
LMBZ6V2ALT1G	6A2	3.0	0.5	5.89	6.2	6.51	1.0	_	-	_	8.7	2.76	2.80	

 $(V_F = 1.1 \text{ V Max } @ I_F = 200 \text{ mA})$

					Breakdown Voltage			V _C @ I _{PP}	(Note 6.)	
	Device	V_{RWM}	I _R @ V _{RWM}	V _{BF}	(Note 4.)	(V)	@ h	v _c	I _{PP}	ΘV_{BR}
Device	Marking	Volts	μΑ	Min	Nom	Max	mA	V	Α	mV/°C
LMBZ6V8ALT1G	6A8	4.5	0.5	6.46	6.8	7.14	1.0	9.6	2.5	3.4
LMBZ9V1ALT1G	9A1	6.0	0.3	8.65	9.1	9.56	1.0	14	1.7	7.5
LMBZ10VALT1G	10A	6.5	0.3	9.50	10	10.5	1.0	14.2	1.7	7.5

 $(V_F = 1.1 \text{ V Max } @ I_F = 200 \text{ mA})$

40 WATTS

					Breakdown Voltage			V _C @ I _{PF}	(Note 6.)	
	Device	V _{RWM}	I _R @ V _{RWM}	V _{BF}	(Note 4.)	(V)	@ দ	V _C	I _{PP}	ΘV_{BR}
Device	Marking	Volts	nA	Min	Nom	Max	mA	V	Α	mV/°C
LMBZ12VALT1G	12A	8.5	200	11.40	12	12.60	1.0	17	2.35	7.5
LMBZ15VALT1G	15A	12	50	14.25	15	15.75	1.0	21	1.9	12.3
LMBZ18VALT1G	18A	14.5	50	17.10	18	18.90	1.0	25	1.6	15.3
LMBZ20VALT1G	20A	17	50	19.00	20	21.00	1.0	28	1.4	17.2
LMBZ27VALT1G	27A	22	50	25.65	27	28.35	1.0	40	1.0	24.3
LMBZ33VALT1G	33A	26	50	31.35	33	34.65	1.0	46	0.87	30.4

^{4.} V_{BR} measured at pulse test current I_{T} at an ambient temperature of 25°C.

^{5.} Z_{ZT} and Z_{ZK} are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for $I_{Z(AC)}$ = 0.1 $I_{Z(DC)}$, with the AC frequency = 1.0 kHz.

^{6.} Surge current waveform per Figure 5. and derate per Figure 6.

TYPICAL CHARACTERISTICS

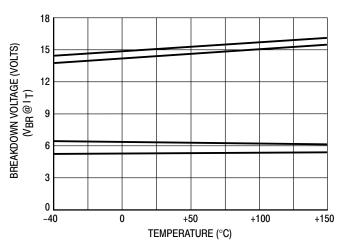
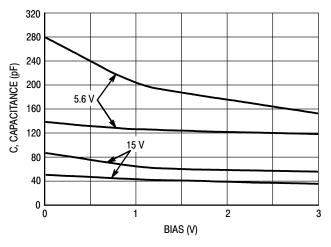



Figure 1. Typical Breakdown Voltage versus Temperature

(Upper curve for each voltage is bidirectional mode, lower curve is unidirectional mode)

Figure 2. Typical Leakage Current versus Temperature

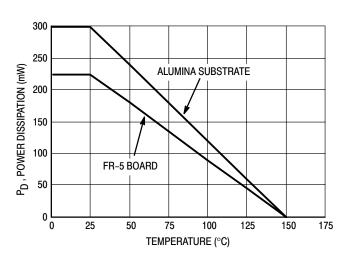
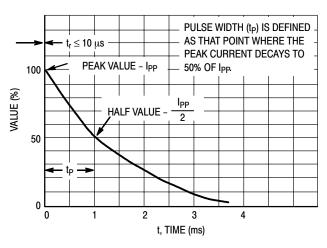



Figure 3. Typical Capacitance versus Bias Voltage (Upper curve for each voltage is unidirectional mode, lower curve is bidirectional mode)

Figure 4. Steady State Power Derating Curve

TYPICAL CHARACTERISTICS

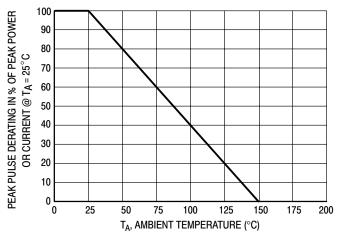
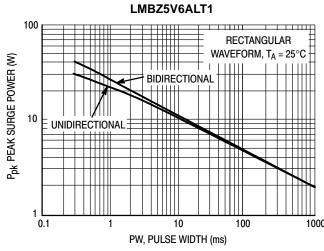



Figure 5. Pulse Waveform

Figure 6. Pulse Derating Curve

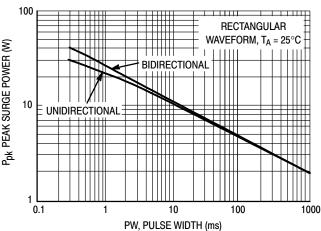


Figure 7. Maximum Non-repetitive Surge Power, Ppk versus PW

Power is defined as $V_{RSM}\,x\,I_{Z}(pk)$ where V_{RSM} is the clamping voltage at $I_Z(pk)$.

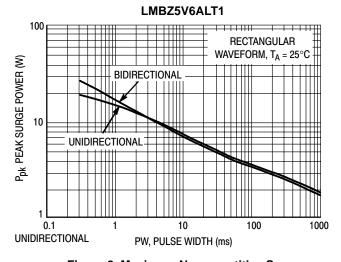
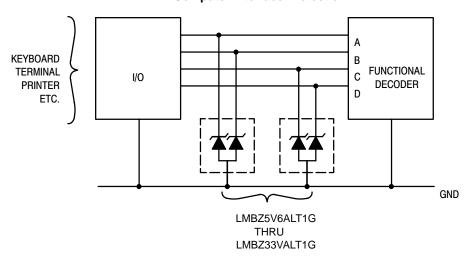


Figure 8. Maximum Non-repetitive Surge Power, Ppk(NOM) versus PW

Power is defined as $V_Z(NOM) \times I_Z(pk)$ where V_Z(NOM) is the nominal zener voltage measured at the low test current used for voltage classification.

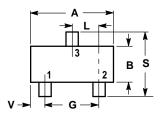


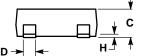
TYPICAL COMMON ANODE APPLICATIONS


A quad junction common anode design in a SOT-23 package protects four separate lines using only one package. This adds flexibility and creativity to PCB design especially

when board space is at a premium. Two simplified examples of TVS applications are illustrated below.

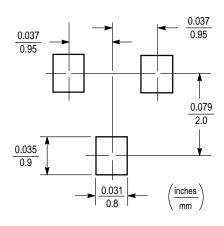
Computer Interface Protection




Microprocessor Protection

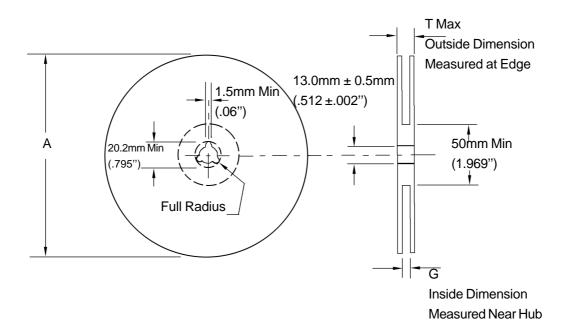
SOT-23

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

DIM	IN	ICHES	MILLIN	METERS
D 1111	MIN	MAX	MIN	MAX
Α	0.1102	0.1197	2.80	3.04
В	0.0472	0.0551	1.20	1.40
С	0.0350	0.0440	0.89	1.11
D	0.0150	0.0200	0.37	0.50
G	0.0701	0.0807	1.78	2.04
Н	0.0005	0.0040	0.013	0.100
J	0.0034	0.0070	0.085	0.177
K	0.0140	0.0285	0.35	0.69
L	0.0350	0.0401	0.89	1.02
S	0.0830	0.1039	2.10	2.64
V	0.0177	0.0236	0.45	0.60

PIN 1. BASE


2. EMITTER

3. COLLECTOR

EMBOSSED TAPE AND REEL DATA FOR DISCRETES

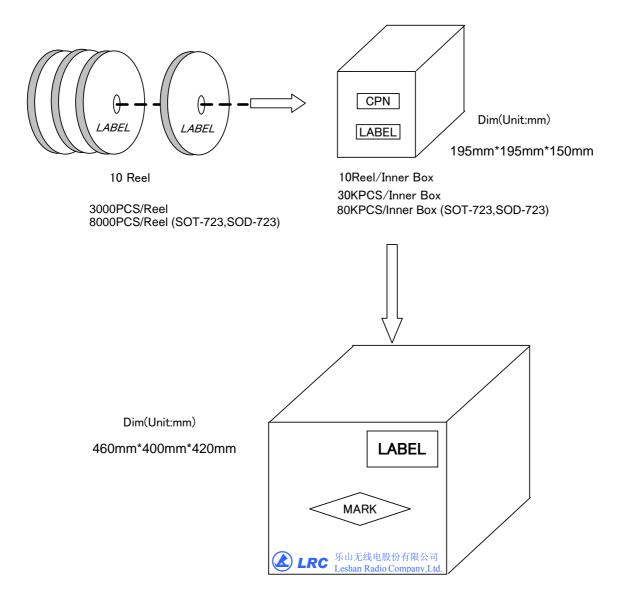
Size	A Max	G	T Max
8 mm	330mm	8.4mm+1.5mm, -0.0	14.4mm
	(12.992")	(.33"+.059", -0.00)	(.56")

Reel Dimensions

Metric Dimensions Govern — English are in parentheses for reference only

Storage Conditions

Temperature: 5 to 40 Deg.C (20 to 30 Deg. C is preferred) Humidity: 30 to 80 RH (40 to 60 is preferred)


Recommended Period: One year after manufacturing

(This recommended period is for the soldering condition only. The characteristics and reliabilities of the products are not restricted to

this limitation)

Shipment Specification

12 Inner Box/Carton

360KPCS/Carton 960KPCS/Carton (SOT-723,SOD-723)